An Accuracy Progressive Sixth-Order Finite-Difference Scheme

نویسندگان

  • PETER C. CHU
  • CHENWU FAN
چکیده

How to reduce the computational error is a key issue in numerical modeling and simulation. The higher the order of the difference scheme, the less the truncation error and the more complicated the computation. For compromise, a simple, three-point accuracy progressive (AP) finite-difference scheme for numerical calculation is proposed. The major features of the AP scheme are three-point, high-order accuracy, and accuracy progressive. The lower-order scheme acts as a ‘‘source’’ term in the higher-order scheme. This treatment keeps three-point schemes with high accuracy. The analytical error estimation shows the sixth-order accuracy that the AP scheme can reach. The Fourier analysis of errors indicates the accuracy improvement from lower-order to higher-order AP schemes. The Princeton Ocean Model (POM) implemented for the Japan/East Sea (JES) is used to evaluate the AP scheme. Consider a horizontally homogeneous and stably stratified JES with realistic topography. Without any forcing, initially motionless ocean will keep motionless forever; that is to say, there is a known solution (V 5 0). Any nonzero model velocity can be treated as an error. The stability and accuracy are compared with those of the second-order scheme in a series of calculations of unforced flow in the JES. The three-point sixthorder AP scheme is shown to have error reductions by factors of 10–20 compared to the second-order difference scheme. Due to their three-point grid structure, the AP schemes can be easily applied to current ocean and atmospheric models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrated Fast and High Accuracy Computation of Convection Diffusion Equations Using Multiscale Multigrid Method

We present an explicit sixth order compact finite difference scheme for fast high accuracy numerical solutions of the two dimensional convection diffusion equation with variable coefficients. The sixth order scheme is based on the well-known fourth order compact scheme, the Richardson extrapolation technique, and an operator interpolation scheme. For a particular implementation, we use multisca...

متن کامل

A new 9-point sixth-order accurate compact finite-difference method for the Helmholtz equation

A new 9-point sixth-order accurate compact finite-difference method for solving the Helmholtz equation in one and two dimensions, is developed and analyzed. This scheme is based on sixth-order approximation to the derivative calculated from the Helmholtz equation. A sixth-order accurate symmetrical representation for the Neumann boundary condition was also developed. The efficiency and accuracy...

متن کامل

High Accuracy and Scalable Multiscale Multigrid Computation for 3D Convection Diffusion Equation

We present a sixth order explicit compact finite difference scheme to solve the three dimensional (3D) convection diffusion equation. We first use multiscale multigrid method to solve the linear systems arising from a 19-point fourth order discretization scheme to compute the fourth order solutions on both the coarse grid and the fine grid. Then an operator based interpolation scheme combined w...

متن کامل

A Spatial Sixth Order Finite Difference Scheme for Time Fractional Sub-diffusion Equation with Variable Coefficient

In this paper, we present a finite difference scheme for a class of time fractional diffusion equation with variable coefficient, where the fractional derivative is defined by the Caputo derivative. The present algorithm is unconditionally stable, and possess spatial sixth order and temporal 2 − α order accuracy, which is an improvement of the spatial fourth order accuracy in the existing resul...

متن کامل

Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation

In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001